|
A body area network (BAN), also referred to as a ''wireless body area network'' (WBAN) or a ''body sensor network'' (BSN), is a wireless network of wearable computing devices.〔(Developing wireless body area networks standard )〕〔Sana Ullah, Henry Higgins, Bart Braem, Benoit Latre, Chris Blondia, Ingrid Moerman, Shahnaz Saleem, Ziaur Rahman and Kyung Sup Kwak, A Comprehensive Survey of Wireless Body Area Networks: On PHY, MAC, and Network Layers Solutions, Journal of Medical Systems (Springer), 2010. .〕〔 〕〔 〕 BAN devices may be embedded inside the body, implants, may be surface-mounted on the body in a fixed position Wearable technology or may be accompanied devices which humans can carry in different positions, in clothes pockets, by hand or in various bags.〔 〕 Whilst there is a trend towards the miniaturization of devices, in particular, networks consisting of several miniaturized body sensor units (BSUs) together with a single body central unit (BCU).〔(O'Donovan, T., O'Donoghue, J., Sreenan, C., O'Reilly, P., Sammon, D. and O'Connor, K.: A Context Aware Wireless Body Area Network (BAN), In proceedings of the Pervasive Health Conference 2009, )〕 Larger decimeter sized (tab and pad) sized smart devices, accompanied devices, still play an important role in terms of acting as a data hub, data gateway and providing a user interface to view and manage BAN applications, in-situ. The development of WBAN technology started around 1995 around the idea of using wireless personal area network (WPAN) technologies to implement communications on, near, and around the human body. About six years later, the term "BAN" came to refer systems where communication is entirely within, on, and in the immediate proximity of a human body.〔http://doc.utwente.nl/66761/1/WG1_Val_Jones_Richard_Bults.pdf〕 A WBAN system can use WPAN wireless technologies as gateways to reach longer ranges. Through gateway devices, it is possible to connect the wearable devices on the human body to the internet. This way, medical professionals can access patient data online using the internet independent of the patient location. ==Concept== The rapid growth in physiological sensors, low-power integrated circuits, and wireless communication has enabled a new generation of wireless sensor networks, now used for purposes such as monitoring traffic, crops, infrastructure, and health. The body area network field is an interdisciplinary area which could allow inexpensive and continuous health monitoring with real-time updates of medical records through the Internet. A number of intelligent physiological sensors can be integrated into a wearable wireless body area network, which can be used for computer-assisted rehabilitation or early detection of medical conditions. This area relies on the feasibility of implanting very small biosensors inside the human body that are comfortable and that don't impair normal activities. The implanted sensors in the human body will collect various physiological changes in order to monitor the patient's health status no matter their location. The information will be transmitted wirelessly to an external processing unit. This device will instantly transmit all information in real time to the doctors throughout the world. If an emergency is detected, the physicians will immediately inform the patient through the computer system by sending appropriate messages or alarms. Currently the level of information provided and energy resources capable of powering the sensors are limiting. While the technology is still in its primitive stage it is being widely researched and once adopted, is expected to be a breakthrough invention in healthcare, leading to concepts like telemedicine and mHealth becoming real. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「body area network」の詳細全文を読む スポンサード リンク
|